理学论坛第一百九十四次学术活动(刘勇 陶琪报告)

发布时间:2023-03-28浏览次数:347

报告题目:An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation

报告人:刘勇副研究员   中科院数学与系统科学研究院计算数学所

报告时间:43(周一)14:00-15:00

报告地点:2-314仙林校区

主办单位:565net必赢客户端565net必赢客户端

 

报告摘要:In this talk, we consider the reliable implementation of high-order unfitted finite element methods on Cartesian meshes with hanging nodes for elliptic interface problems. We construct a reliable algorithm to merge small interface elements with their surrounding elements to automatically generate the finite element mesh whose elements are large with respect to both domains. We propose new basis functions for the interface elements to control the growth of the condition number of the stiffness matrix in terms of the finite element approximation order, the number of elements of the mesh, and the interface deviation which quantifies the mesh resolution of the geometry of the interface. Numerical examples are presented to illustrate the competitive performance of the method.

报告人简介:科院数学与系统科学研究院,计算数学所,优秀青年副研究员。分别于2015年,2020年获中国科学技术大学学士和博士学位。2018年至2020年在美国布朗大学应用数学系联合培养。2020年至2022年在中科院数学与系统科学研究院,华罗庚数学科学中心做博士后。主要研究领域为高精度数值计算方法,包括间断有限元方法的算法设计及其数值分析、磁流体力学方程的数值模拟、非拟合网格有限元方法等。曾获2020年中科院院长奖特别奖,2021年中科院优博。2023年,获国家自然科学基金青年项目,入选中科院青年创新促进会,入选中科院数学与系统科学研究院“陈景润未来之星”人才计划。在SINUM, SISC, JCPSCI期刊发表论文10余篇。

 

报告题目:Smoothness-Increasing Accuracy-Conserving (SIAC) filter for discontinuous Galerkin methods

报告人:陶琪副教授   北京工业大学理学部

报告时间:43日(周一)15:00-16:00

报告地点:2-314 仙林校区

主办单位:565net必赢客户端565net必赢客户端

 

报告摘要:In this talk, we shall first introduce the Smoothness-Increasing Accuracy-Conserving (SIAC) filters for discontinuous Galerkin (DG) methods. It is well known that there are highly oscillatory errors for finite element approximations to PDEs that contain hidden superconvergence points. To exploit this information, a SIAC filter is used to create a superconvergence filtered solution. This is accomplished by convolving the DG approximation against a B-spline kernel. We then present theoretical error estimates in the negative-order norm for the DG approximations to linear/nonlinear hyperbolic equations and KdV equations. Numerical results will be shown to confirm the theoretical results.

报告人简介:北京工业大学理学部副教授,校聘教授。于2020获得中国科学技术大学博士学位。2018年至2020年在美国布朗大学应用数学系联合培养。2020年至2022年在北京计算科学研究中心做博士后。主要研究领域为间断有限元方法的算法设计、误差估计及超收敛分析等主要结果发表SIAM J. Numer. Anal., Math. Comp., J. Sci. Comput. 等期刊曾获中国博士后基金特别资助和面上资助

 


Copyright © 565net必赢客户端565net必赢客户端  All Rights Reserved.